Open Access Open Access  Restricted Access Subscription or Fee Access

An Algorithm and Heuristic based on Normalized Mutual Information for Dimensionality Reduction and Classification of Hyperspectral images

Elkebir Sarhrouni, Ahmed Hammouch, Driss Aboutajdine

Abstract


In the feature classification domain, the choice of data affects widely the results. The Hyperspectral image (HSI), is a set of more than a hundred bidirectional measures (called bands), of the same region (called ground truth map: GT). The HSI is modelized at a set of N vectors. So we have N features (or attributes) expressing N vectors of measures for C substances (called classes). The problematic is that it’s pratically impossible to investgate all possible subsets. So we must find K vectors among N, such as relevant and no redundant ones; in order to classify substances. Here we introduce an algorithm based on Normalized Mutual Information to select relevant and no redundant bands, necessary to increase classification accuracy of HSI.

Full Text: PDF


Disclaimer/Regarding indexing issue:

We have provided the online access of all issues and papers to the indexing agencies (as given on journal web site). It’s depend on indexing agencies when, how and what manner they can index or not. Hence, we like to inform that on the basis of earlier indexing, we can’t predict the today or future indexing policy of third party (i.e. indexing agencies) as they have right to discontinue any journal at any time without prior information to the journal. So, please neither sends any question nor expects any answer from us on the behalf of third party i.e. indexing agencies.Hence, we will not issue any certificate or letter for indexing issue. Our role is just to provide the online access to them. So we do properly this and one can visit indexing agencies website to get the authentic information.